2). The $\mathrm{C}-\mathrm{N}$ bonds also have double-bond character. The mean values 1.69 and $1.74 \AA$ for the $\mathrm{S}-\mathrm{C}$ bonds and $1.35 \AA$ for the $\mathrm{C}-\mathrm{N}$ bonds compare well with the values found in the other dithiocarbamates mentioned above.

The terminal propyl groups of each ligand adopt their more usual conformation, lying on alternate sides of the ligand plane.*

Thanks are due to the University of Thessaloniki for the use of computing facilities.

* See deposition footnote.

References
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Colapietro, m., Domenicano, A., Scaramuzza, l. \&
Vaciago, A. (1968). Chem. Commun. pp. 302-303.

International Tables for X-ray Crystallography (1974). Vol. IV, pp. 71-151. Birmingham: Kynoch Press.
Kavounis, C. A., Kokkou, S. C., Rentzeperis, P. J. \& Karagiannidis, P. (1980). Acta Cryst. B36, 2954-2958.
Main, P. (1970). Private communication. Univ. of York, England.
Main, P., Woolfson, M., Lessinger, L., Germain, G. \& Declerce, J.-P. (1974). MULTAN 74. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain-la-Neuve, Belgium.
Raston, C. L. \& White, A. H. (1975). J. Chem. Soc. Dalton Trans. pp. 2425-2429.
Raston, C. L. \& White, A. H. (1976). J. Chem. Soc. Dalton Trans. pp. 791-794.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1976). The XRAY system. Tech. Rep. TR-446. Computer Science Center, University of Maryland, College Park, Maryland.

$1,1,1,1,2,2,2,3,3,3$-Decacarbonyl-2,3- μ-hydrido-2,3- $\mu-(\alpha-\beta-\eta: \alpha-\sigma$-styryl)-triangulotriosmium

By Robert J. Goudsmit, Brian F. G. Johnson, Jack Lewis and Paul R. Raithby
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England
and William Clegg
Anorganisch-Chemisches Institut der Universität, Tammannstrasse 4, D-3400 Göttingen, Federal Republic of Germany

(Received 3 March 1982; accepted 15 May 1982)

Abstract

C}_{18} \mathrm{H}_{8} \mathrm{O}_{10} \mathrm{Os}_{3}, M_{r}=954.84\), monoclinic, $C 2 / c, \quad a=18.717(6), \quad b=7.636(2), \quad c=$ $30 \cdot 211$ (10) $\AA, \beta=91.88(3)^{\circ}, U=4315.5 \AA^{3}, Z=8$, $D_{c}=2.94 \mathrm{Mg} \mathrm{m}^{-3}, \mu($ Mo $K \alpha)=17.7 \mathrm{~mm}^{-1}$. The structure was refined to an R of 0.064 for 2502 unique observed diffractometer data. The three Os atoms lie at the vertices of a triangle; two of these atoms are each coordinated to three terminal carbonyls and the other is coordinated to four. The styryl ligand σ-coordinates to one Os atom and π-coordinates to another, asymmetrically bridging the shortest $\mathrm{Os}-\mathrm{Os}$ bond. The distribution of the carbonyl ligands indicates that the hydride bridges the same short edge.

Introduction. The complex $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{NCCH}_{3}\right)_{2}$ has been shown to be an important, reactive starting material in many reactions of small organic molecules with trinuclear Os clusters (Tachikawa \& Shapley, 1977; Johnson, Lewis \& Pippard, 1981). The aceto-
nitrile ligands are easily displaced by other groups. A recent publication has reported the reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{NCCH}_{3}\right)_{2}$ with amides and aldehydes (Johnson, Lewis, Odiaka \& Raithby, 1981). In a continuation of this series of reactions of $\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}$ $\left(\mathrm{NCCH}_{3}\right)_{2}$, the complex has been treated with styrene. Here we report the structure of a product from this reaction.

The title compound was prepared by reacting excess styrene with $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{NCCH}_{3}\right)_{2}$ in refluxing cyclohexane for 30 min (Goudsmit, 1981). The product was purified by thin-layer chromatography. The molecular geometry could not be unambiguously determined by spectroscopic techniques and a single-crystal X-ray analysis was undertaken. Recrystallization from cyclohexane yielded orange, rectangular blocks. 4471 intensities were recorded ($7<2 \theta<50^{\circ}$) on a Stoe four-circle diffractometer, with graphite-monochromated Mo $K \alpha$ radiation, using ω scans, and a
crystal $0.31 \times 0.11 \times 0.08 \mathrm{~mm}$. The data were profile-fitted (Clegg, 1981); Lp corrections, and semiempirical absorption corrections based on a pseudoellipsoid model and 351 azimuthal scan data from 12 independent reflections were applied; transmission factors ranged from 0.056 to 0.177 for the full data set. Equivalent reflections were averaged to give 2502 unique observed intensities $[F>3 \sigma(F)$]. Cell dimensions were derived from the angular measurements of 31 strong reflections ($20<2 \theta<25^{\circ}$).

The three Os-atom positions were derived from a Patterson synthesis. Automatic direct methods yielded an Os_{3} triangle with approximately correct orientation, but wrongly positioned relative to the cell origin. The other non-hydrogen atoms were determined from subsequent difference syntheses. The structure was refined by blocked-cascade least squares with complex neutral-atom scattering factors (International Tables for X-ray Crystallography, 1974) and weights $w=$ $\left[\sigma^{2}(F)+0 \cdot 00087\left|F_{o}\right|^{2}\right]^{-1}$. The refined parameters included anisotropic thermal parameters for the Os, C, and O atoms. The hydride atom and ethylenic H atoms bonded to $\mathrm{C}(1)$ and $\mathrm{C}(2)$ were not located; the ring H atoms were placed in idealized positions and constrained to ride on the relevant C atom at a distance of

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right.$, for $\mathrm{Os} \times 10^{4}$)

$U_{\text {eq }}=\frac{1}{3}$ trace of the orthogonalized \mathbf{U} matrix.				
	x	y	z	$U_{\text {eq }}$
Os(1)	4217 (1)	3755 (1)	6676 (1)	427 (3)
$\mathrm{Os}(2)$	3259 (1)	6678 (1)	6673 (1)	451 (3)
$\mathrm{Os}(3)$	3023 (1)	3735 (1)	6075 (1)	425 (3)
C(11)	4956 (16)	5345 (37)	6835 (9)	70 (11)
O(11)	5411 (11)	6256 (22)	6929 (6)	74 (8)
C (12)	4041 (13)	3140 (28)	7290 (7)	50 (8)
$\mathrm{O}(12)$	3951 (11)	2705 (26)	7633 (5)	80 (8)
C(13)	4780 (17)	1710 (42)	6584 (8)	73 (12)
O(13)	5207 (14)	613 (29)	6516 (7)	103 (11)
C(21)	2406 (19)	8090 (29)	6555 (8)	63 (11)
$\mathrm{O}(21)$	1899 (13)	8914 (29)	6501 (7)	100 (10)
C (22)	3769 (14)	8038 (33)	7109 (7)	58 (9)
$\mathrm{O}(22)$	4092 (11)	8934 (22)	7338 (5)	79 (8)
C(23)	3745 (13)	7850 (35)	6185 (8)	60 (10)
O(23)	4027 (11)	8535 (21)	5921 (6)	73 (7)
C(24)	2820 (16)	5442 (40)	7158 (8)	74 (11)
$\mathrm{O}(24)$	2563 (12)	4814 (29)	7438 (5)	88 (9)
C(31)	2598 (15)	5307 (36)	5653 (8)	65 (11)
O(31)	2338 (11)	6263 (24)	5409 (6)	83 (8)
$\mathrm{C}(32)$	2184 (13)	3724 (31)	6409 (8)	56 (9)
$\mathrm{O}(32)$	1650 (11)	3622 (30)	6583 (6)	100 (10)
C(33)	2765 (15)	1627 (39)	5742 (9)	64 (11)
$\mathrm{O}(33)$	2626 (12)	472 (29)	5543 (7)	92 (10)
C(1)	4226 (11)	4344 (33)	5979 (6)	46 (8)
C(2)	4076 (12)	2997 (29)	5669 (7)	44 (8)
C(3)	4085 (13)	3299 (31)	5184 (7)	50 (8)
C(4)	4156 (13)	1822 (36)	4905 (8)	64 (10)
C(5)	4202 (16)	1817 (55)	4474 (8)	105 (16)
C(6)	4197 (15)	3471 (55)	4274 (8)	129 (20)
C(7)	4105 (18)	4944 (61)	4517 (10)	126 (19)
C(8)	4054 (14)	4882 (40)	4984 (8)	66 (11)

Table 2. Bond lengths (\AA)

$\mathrm{Os}(1)-\mathrm{Os}(2)$	$2.863(2)$	$\mathrm{Os}(1)-\mathrm{Os}(3)$	$2.834(2)$
$\mathrm{Os}(1)-\mathrm{C}(11)$	$1.890(28)$	$\mathrm{Os}(1)-\mathrm{C}(12)$	$1.951(22)$
$\mathrm{Os}(1)-\mathrm{C}(13)$	$1.909(32)$	$\mathrm{Os}(1)-\mathrm{C}(1)$	$2.154(20)$
$\mathrm{Os}(2)-\mathrm{Os}(3)$	$2.909(2)$	$\mathrm{Os}(2)-\mathrm{C}(21)$	$1.951(31)$
$\mathrm{Os}(2)-\mathrm{C}(22)$	$1.907(24)$	$\mathrm{Os}(2)-\mathrm{C}(23)$	$1.971(25)$
$\mathrm{Os}(2)-\mathrm{C}(24)$	$1.947(27)$	$\mathrm{Os}(3)-\mathrm{C}(31)$	$1.906(26)$
$\mathrm{Os}(3)-\mathrm{C}(32)$	$1.894(25)$	$\mathrm{Os}(3)-\mathrm{C}(33)$	$1.951(29)$
$\mathrm{Os}(3)-\mathrm{C}(1)$	$2.326(21)$	$\mathrm{Os}(3)-\mathrm{C}(2)$	$2.421(22)$
$\mathrm{C}(11)-\mathrm{O}(11)$	$1.128(34)$	$\mathrm{C}(12)-\mathrm{O}(12)$	$1.106(27)$
$\mathrm{C}(13)-\mathrm{O}(13)$	$1.181(40)$	$\mathrm{C}(21)-\mathrm{O}(21)$	$1.145(39)$
$\mathrm{C}(22)-\mathrm{O}(22)$	$1.133(30)$	$\mathrm{C}(23)-\mathrm{O}(23)$	$1.104(31)$
$\mathrm{C}(24)-\mathrm{O}(24)$	$1.098(33)$	$\mathrm{C}(31)-\mathrm{O}(31)$	$1.136(32)$
$\mathrm{C}(32)-\mathrm{O}(32)$	$1.149(32)$	$\mathrm{C}(33)-\mathrm{O}(33)$	$1.093(36)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.415(31)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.481(29)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.417(35)$	$\mathrm{C}(3)-\mathrm{C}(8)$	$1.353(37)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.310(35)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.400(56)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.357(57)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.418(40)$

Table 3. Bond angles $\left(^{\circ}\right)$

$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$	61.4 (1)	$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(11)$	87.3 (9)
$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(11)$	136.2 (9)	$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(12)$	93.7 (7)
Os(3)-Os(1)-C(12)	116.9 (7)	$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(12)$	93.4 (11)
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(13)$	170.3 (8)	$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(13)$	109.2 (8)
$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(13)$	99.2 (13)	$\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{C}(13)$	93.0 (10)
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(1)$	81.9 (6)	$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(1)$	53.5 (6)
$\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(1)$	94.9 (11)	$\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{C}(1)$	170.4 (9)
$\mathrm{C}(13)-\mathrm{Os}(1)-\mathrm{C}(1)$	90.4 (10)	$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$	58.8 (1)
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(21)$	$160 \cdot 1$ (7)	$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(21)$	101.9 (7)
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(22)$	97.1 (8)	$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(22)$	155.7 (8)
$\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{C}(22)$	102.4 (11)	$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(23)$	93.0 (7)
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(23)$	87.2 (8)	$\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{C}(23)$	90.4 (11)
$\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{C}(23)$	92.1 (10)	$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(24)$	84.2 (9)
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(24)$	91.9 (8)	$\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{C}(24)$	92.4 (12)
$\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{C}(24)$	87.6 (11)	$\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{C}(24)$	177.1 (12)
$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$	59.8 (1)	$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(31)$	136.8 (8)
$\mathrm{Os}(2)-\mathrm{Os}(3) \mathrm{C}(31)$	88.9 (8)	$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(32)$	108.0 (7)
$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(32)$	77.5 (7)	$\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{C}(32)$	91.4 (11)
Os(1)-Os(3)-C(33)	120.8 (8)	$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(33)$	171.2 (8)
$\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{C}(33)$	94.8 (11)	$\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{C}(33)$	94.3 (11)
$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(1)$	48.1 (5)	$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(1)$	78.2 (6)
$\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{C}(1)$	$100 \cdot 1$ (10)	$\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{C}(1)$	152.9 (9)
$\mathrm{C}(33)-\mathrm{Os}(3)-\mathrm{C}(1)$	109.0 (10)	$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(2)$	71.9 (5)
$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(2)$	112.7 (5)	$\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{C}(2)$	97.8 (9)
$\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{C}(2)$	166.3 (9)	$\mathrm{C}(33)-\mathrm{Os}(3)-\mathrm{C}(2)$	74.8 (10)
$\mathrm{C}(1)-\mathrm{Os}(3)-\mathrm{C}(2)$	34.6 (8)	$\mathrm{Os}(1)-\mathrm{C}(11)-\mathrm{O}(11)$	178.1 (24)
$\mathrm{Os}(1)-\mathrm{C}(12)-\mathrm{O}(12)$	176.3 (21)	$\mathrm{Os}(1)-\mathrm{C}(13)-\mathrm{O}(13)$	170.3 (28)
$\mathrm{Os}(2)-\mathrm{C}(21)-\mathrm{O}(21)$	177.5 (22)	$\mathrm{Os}(2)-\mathrm{C}(22)-\mathrm{O}(22)$	173.9 (22)
$\mathrm{Os}(2)-\mathrm{C}(23)-\mathrm{O}(23)$	178.0 (25)	$\mathrm{Os}(2)-\mathrm{C}(24)-\mathrm{O}(24)$	176.9 (26)
$\mathrm{Os}(3)-\mathrm{C}(31)-\mathrm{O}(31)$	178.4 (22)	$\mathrm{Os}(3)-\mathrm{C}(32)-\mathrm{O}(32)$	174.1 (20)
$\mathrm{Os}(3)-\mathrm{C}(33)-\mathrm{O}(33)$	177.8 (28)	$\mathrm{Os}(1) \mathrm{C}(1)-\mathrm{Os}(3)$	78.4 (7)
$\mathrm{Os}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	119.3 (17)	$\mathrm{Os}(3)-\mathrm{C}(1)-\mathrm{C}(2)$	76.4 (13)
$\mathrm{Os}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	69.0 (12)	$\mathrm{Os}(3)-\mathrm{C}(2)-\mathrm{C}(3)$	120.0 (15)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	122.2 (20)	$\mathrm{C}(2) \cdot \mathrm{C}(3)-\mathrm{C}(4)$	117.9 (21)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	125.4 (21)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	116.7 (21)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	127.3 (29)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	115.3 (32)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120.9 (26)	C (6). $\mathrm{C}(7)-\mathrm{C}(8)$	121.7(36)

0.96 (1) \AA with isotropic thermal parameters fixed at 1.2 times U_{eq} for the C atom. The refinement converged to $R=0.064$ and $R^{\prime}=\left(\sum w^{1 / 2} \Delta /\right.$ $\left.\sum w^{1 / 2}\left|F_{o}\right|\right)=0.060$. The final atomic coordinates and equivalent isotropic temperature factors for the nonhydrogen atoms are listed in Table 1,* and bond lengths and angles in Tables 2 and 3, respectively.

[^0]$$
\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{O}_{10} \mathrm{Os}_{3}
$$

Discussion. The structure of the title compound closely resembles that of the μ-1-butenyl, $\mathrm{HOs}_{3}(\mathrm{CO})_{10}(\mathrm{CH}-$ $\mathrm{CHCH}_{2} \mathrm{CH}_{3}$) (Guy, Reichert \& Sheldrick, 1976), and μ-vinyl, $\mathrm{HOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)$ (Orpen, Pippard, Sheldrick \& Rouse, 1978), analogues. A similar mode of coordination of the organic ligand has been observed in the structures of $\mathrm{H}_{3} \mathrm{Os}_{4}(\mathrm{CO})_{11}\left(\mathrm{C}_{6} \mathrm{H}_{9}\right)$ (Bhaduri et al., 1979) and $\mathrm{H}_{3} \mathrm{Os}_{4}(\mathrm{CO})_{11}(\mathrm{CHCHPh})$ (Johnson, Lewis, Orpen, Raithby \& Rouse, 1981). The molecular geometry is shown in Fig. 1. The three Os atoms lie at the vertices of a triangle, the shortest edge of which is bridged by the organic group. $\mathrm{C}(1)$ forms a σ bond to $\mathrm{Os}(1)$, and $\mathrm{C}(1)$ and $\mathrm{C}(2)$ form a π bond to $\mathrm{Os}(3)$. The distribution of the carbonyls indicates that the hydride also bridges the short $\mathrm{Os}(1)-\mathrm{Os}(3)$ edge. The cis $\mathrm{Os}-\mathrm{Os}-\mathrm{C}($ carbonyl) angles for $\mathrm{Os}(1)-\mathrm{Os}(3)$ average $114(2)^{\circ}$ compared to $89(2)^{\circ}$ for the other edges, the steric influence of the hydride causing the adjacent carbonyls to bend away from the $\mathrm{Os}(1)-\mathrm{Os}(3)$ edge. Three terminal carbonyls are coordinated to $\mathrm{Os}(1)$ and Os(3), while there are two axial and two equatorial carbonyls bonded to $\mathrm{Os}(2)$.

The bridged $\mathrm{Os}(1)-\mathrm{Os}(3)$ distance in the title complex is the same as that [2.834(1) \AA] in $\mathrm{HOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{CHCHCH}_{2} \mathrm{CH}_{3}\right)$ (Guy et al., 1976). The two unbridged $\mathrm{Os}-\mathrm{Os}$ bonds are also similar in length to those [2.858 (1) and 2.923 (1) \AA] for the unbridged bonds in the butenyl analogue. Again the longest $\mathrm{Os}-\mathrm{Os}$ bond is associated with the metal atom that is π-bonded to the organic ligand. Similar trends are observed in the structure of $\mathrm{HOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)$ (Orpen et al., 1978). The $\mathrm{Os}(1)-\mathrm{C}(1) \sigma$ bond and the $\mathrm{Os}(3)-\mathrm{C}(1)$ and $\mathrm{Os}(3)-\mathrm{C}(2)$ distances which make up the π bond are not significantly different from the equivalent bond lengths in $\mathrm{HOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{CHCHCH}_{2}-\right.$ CH_{3}). The $\mathrm{C}(1)-\mathrm{C}(2)$ bond length is similar to the value of 1.40 (3) \AA for the equivalent bond in the butenyl complex, and this distance is consistent with a formal $\mathrm{C}-\mathrm{C}$ double bond donating electron density to a metal atom. The bond parameters in the $\mathrm{CH}=\mathrm{C}(\mathrm{H}) \mathrm{Ph}$ ligand in the title compound are generally similar to those reported for this ligand in $\mathrm{H}_{3} \mathrm{Os}_{4}{ }^{-}$ (CO) ${ }_{11}$ (CHCHPh) (Johnson, Lewis, Orpen, Raithby \& Rouse, 1981). However, the neutron structure of the Os_{4} cluster indicates a more symmetrical coordination of $\mathrm{C}(1)$ to the two Os atoms which it bridges [$\mathrm{Os}-\mathrm{C}$ 2.15 (1) \AA for the σ bond, $\mathrm{Os}-\mathrm{C} 2.15$ (1) and 2.30 (1) \AA for the π bond] and the $\mathrm{Os}-\mathrm{C}$ distances making up the π bond are also slightly shorter.

The ten carbonyl groups are all terminal and $\mathrm{Os}-\mathrm{C}-\mathrm{O}$ angles deviate from linearity by less than 10°. The $\mathrm{Os}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bond lengths average 1.93 (5) and $1.13(5) \AA$, respectively. These values are

Fig. 1. The molecular structure of $\mathrm{HOs}_{3}(\mathrm{CO})_{10}(\mathrm{CHCHPh})$.
similar to those reported in other trinuclear Os clusters. Although the e.s.d.'s in the $\mathrm{Os}-\mathrm{C}$ (carbonyl) bonds are rather high to make any assessment of the bonding, the trends indicate that the $\mathrm{Os}-\mathrm{C}$ axial bonds on $\mathrm{Os}(2)$ are longer than the equatorial. This is consistent with the trans influence of the carbonyl groups, where the competition of two trans carbonyls for electrons from the same metal orbital results in bond lengthening.

We thank the SERC for financial support. All computations were carried out on Data General Eclipse S250 and NOVA 4 computers at the University of Göttingen, using programs written by Dr W . Clegg and Professor G. M. Sheldrick.

References

Bhaduri, S., Johnson, B. F. G., Kelland, J. W., Lewis, J., Raithby, P. R., Rehani, S., Sheldrick, G. M., Wong, K. \& McPartlin, M. (1979). J. Chem. Soc. Dalton Trans. pp. 562-568.
Clegg, W. (1981). Acta Cryst. A37, 22-28.
Goudsmit, R. J. (1981). Unpublished results.
Guy, J. J., Reichert, B. E. \& Sheldrick, G. M. (1976). Acta Cryst. B32, 3319-3320.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Johnson, B. F. G., Lewis, J., Odiaka, T. I. \& Raithby, P. R. (1981). J. Organomet. Chem. 216, C56-C60.

Johnson, B. F. G., Lewis, J., Orpen, A. G., Raithby, P. R. \& Rouse, K. D. (1981). J. Chem. Soc. Dalton Trans. pp. 788-792.
Johnson, B. F. G., Lewis, J. \& Pippard, D. A. (1981). J. Chem. Soc. Dalton Trans. pp. 407-412.
Orpen, A. G., Pippard, D., Sheldrick, G. M. \& Rouse, K. D. (1978). Acta Cryst. B34, 2466-2472.

Tachikawa, M. \& Shapley, J. R. (1977). J. Organomet. Chem. 124, C19-C22.

[^0]: * Lists of structure factors, \mathbf{H}-atom parameters and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36925 (18 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

